





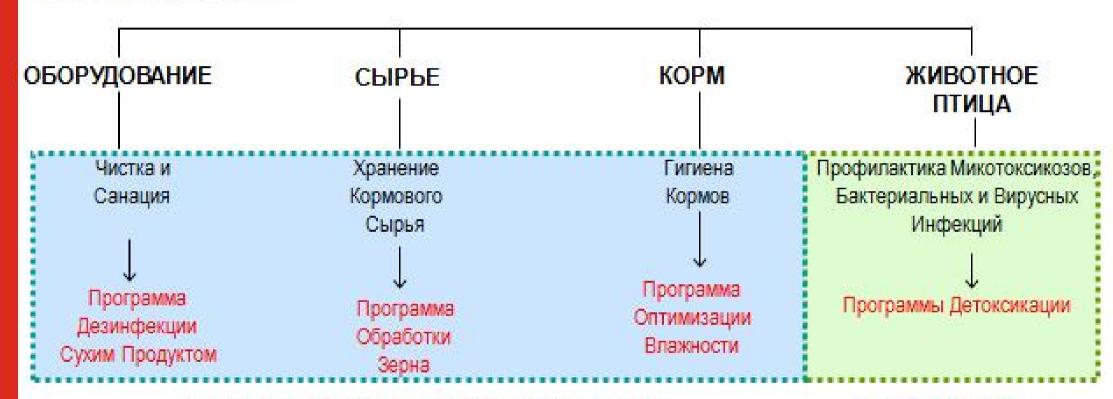






# Изучение воздействия препаратов Сал Карб на вирусы Гриппа птиц и Ньюкаслской болезни

Маргарита Гальцова Технический консультант ветеринарный врач




#### Содержание:

- 1. Программы компании «Кемин» в области пищевой безопасности.
- 2. Состав «Сал Карба сухого» и «Сал Карба жидкого», показания к применению.
- 3. Основные вирусные инфекционные заболевания птицеводства, опасные для здоровья человека.
- 4. Вируцидные свойства неорганических и органических кислот.
- 5. Изучение воздействия «Сал Карба» на вирусы Гриппа птиц и Ньюкаслской болезни.
- 6. Резюме. Актуальность использования выявленных свойств препаратов в программе биобезопасности на птицеводческих предприятиях.
- 7. Возможности и стратегия компании «Кемин Индастриз» в России открытие завода по производству кормовых добавок в Свободной Экономической Зоне «Липецк».

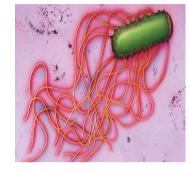


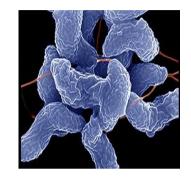
# Программы компании Кемин в области Пищевой Безопасности



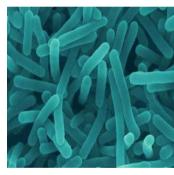
ПРЕДОТВРАЩЕНИЕ ПОПАДАНИЯ В ОРГАНИЗМ УДАЛЕНИЕ ИЗ ОРГАНИЗМА

Citarin Insulta, Inc. and is good of companies. 2017. All lights assemble. 879 Testeration of Klardy Insultation, Inc., U.S.A.


# Патогенные бактерии, наносящие наибольший ущерб


#### в птицеводстве

- · Сальмонелла
- Кампилобактерия




• Листерия











• Кишечная палочка (токсиногенные штаммы)



#### Последствия заражения кормов патогенными бактериями

- Ухудшение клинического состояния птицы
- Увеличение смертности
- Ухудшение продуктивности
- Увеличение затрат на лечение поголовья
- Снижение прибыльности производства



- Потеря доверия к производителю яйца, мясопродуктов
- Высокая опасность для здоровья человека заражение пищевыми токсико инфекциями





# Сал Карб<sup>®</sup>: Состав и биологические свойства

#### Состав:

пропионовая кислота и соли, муравьиная кислота и соли, сорбиновая кислота, фосфорная кислота, бутилгидроксианизол

Антимикробный эффект Сал Карба основан на:

- ингибирующем действии диссоциированных пропионовой и муравьиной кислот
- бактерицидном действии недиссоциированной пропионовой кислоты
- консервирующих свойствах пропионовокислого и муравьинокислого аммония (NH<sub>4</sub><sup>+</sup>),которые обеспечивают защиту от повторного заражения
- синергетическим действием сорбиновой и фосфорной кислот и бутилгидроксианизола против образования и развития плесеней.

**Сал Карб** не уступает по антибактериальным свойствам пропионовой и муравьиной кислотам, но имея рН 5,0-5,6 он значительно менее агрессивен в плане воздействия на поверхности оборудования.



## Состав Сал Карба<sup>®</sup>

#### Сал Карб® сухой

- содержит:
  - Формиат и пропионат аммония и кальция
  - Муравьиную кислоту
  - Сорбиновую кислоту
  - Бутилгидроксианизол
- Мин. 70% активных компонентов.

#### Сал Карб® жидкий

- содержит:
  - Формиат аммония
  - Пропионовую кислоту
  - Сорбиновую кислоту
  - Фосфорную кислоту
  - Бутилгидроксианизол
  - Сурфактант
- Мин. 67% активных компонентов



#### Сал Карб: Показания к применению

- **Сал Карб** обладает выраженным антибактериальным действием, угнетает рост и препятствует размножению патогенных микроорганизмов сальмонелл, БГКП;
- Ингредиенты в составе Сал Карба позволяют деконтаминировать корма, обеспечивают их длительную защиту от повторного заражения, сохраняют качество и питательную ценность, увеличивают срок годности, что важно при транспортировке на дальние расстояния, т.к. эти ингредиенты не испаряются после внесения;
- **Использование** безопасных кормов способствует улучшению здоровья поголовья птицы и увеличению производственных показателей.
- **Снижение** уровня контаминации кормов патогенами повышает уровень биобезопасности предприятия, благодаря контролю горизонтального распространения инфекций.
- Сал Карб сухой и жидкий широко и эффективно используются в программах кормопроизводства с 1996 года. Также эффективно зарекомендовала себя Программа дезинфекции оборудования комбикормовых заводов Сал Карбом сухим.

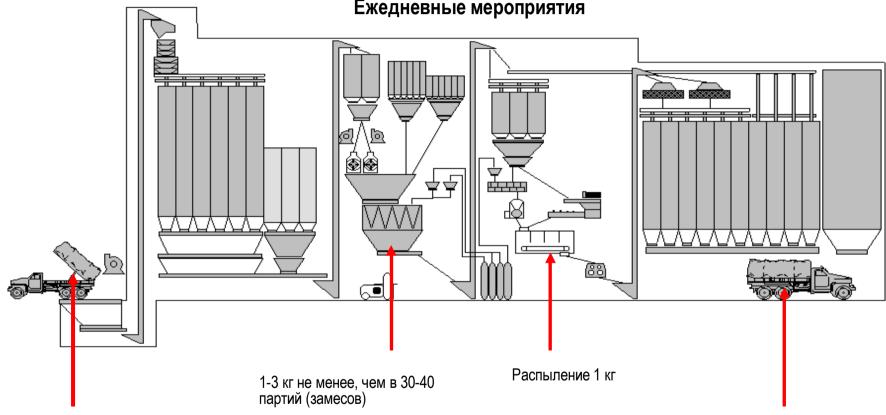


## Программа применения Сал Карба® сухого при производстве кормов

- Примерная схема применения Сал Карба сухого на ККЗ для контроля бактериальной микрофлоры в кормах и на поверхности оборудования
- Цель : предотвращение повторного заражения кормов при контакте с зараженными поверхностями
- 1. Смеситель
- 2. Охладительная колонка
- 3. Измельчитель гранул
- 3. Силоса готовой продукции
- 4. Автотранспорт

мин. 1 кг/тонну корма

1 кг/день

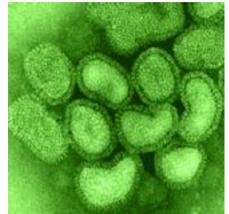

1 кг/день

1 кг/25 м<sup>2</sup> по мере высвобождения

0.5 кг/день/автомобиль



#### Схема применения САЛ КАРБА сухого для дезинфеции ККЗ Ежедневные мероприятия






Распыление 0,5- 1 кг до и после выгрузки

## Но...вирусные инфекции остаются самыми опасными факторами не только для птицеводства, но и для здоровья человека

Болезнь Ньюкасла – высококонтагиозное вирусное заболевание птиц отряда куриных, характеризуется поражением ЦНС, ЖКТ, пневмонией и высокой летальностью. Зарегистрирована на всех континентах, отнесена к особо опасным из списка А. Возбудитель – РНК – содержащий вирус из семейства Paramixoviridae, выделяемый вирусоносителями в течении двух недель с фекалиями, трахеальной слизью - очень жизнеспособен во внешней среде - в условиях холодильника – 538 дней, в птичниках при t до 15°C – 156 дней. Решающим фактором в диагностике являются лабораторные исследования. Основными мерами борьбы и неспецифической профилактики остаются все усилия по охране птицехозяйств от заноса вируса.



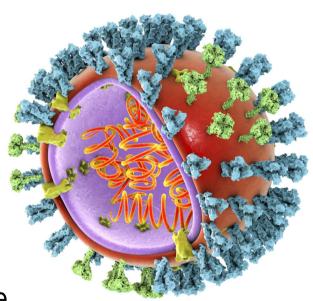




#### Ньюкаслская болезнь у человека

- В 1985 году по данным экспертов ВОЗ болезнь Ньюкасла отнесена к зоонозам.
- Человек заражается при вдыхании пыли, контаминированной вирусом и, занося грязными руками вирус на конъюнктиву глаз.
- Естественная восприимчивость у людей невысока.
- Заболевание носит спорадический характер, протекает с явлениями конъюнктивитов, субфибрильной температурой, катаральным воспалением верхних дыхательных путей.
- У детей отмечены случаи течения заболевания с явлениями поражения оболочек головного мозга.
- Меры иммунопрофилактики не разработаны.




#### Высокопатогенный Грипп Птиц – AVIAN INFLUENZA VIRUSES

- В 1955 г выделен вирус из семейства ORTOMIXOVIRIDAE типа А.
- Уникальность вируса гриппа типа А заключается в способности сильно изменять собственную антигенную структуру, оставаясь одним из основных эпидемических заболеваний птиц и человека к примеру, низкопатогенный вирус H7N9 азиатского происхождения вызывает заболевания людей в Китае и характеризуется как высокопатогенный для птиц. В конце 1997г в Китае на рынках живой птицы и фермах Гонконга было уничтожено около 1,5 млн кур и другой домашней птицы, это предотвратило рекомбинацию между вирусами гриппа птиц и гриппа человека, и возможную адаптацию вируса гриппа птиц H5N1 к человеку.
- Случаи прямой передачи вирусов гриппа птиц человеку выявляются с 1953 г H7N7, H5N1, H9N2 воздушно капельным путем благодаря высокой концентрации вируса в респираторных выделениях, фекалиях птиц и тесным контактам между людьми и птицей. При 4С живет до 35 дней, 7 дней при t 20С, 105 дней сохраняется в трупах.



#### Характеристика вируса

- Вирус гриппа РНК-содержащий вирус сферической формы
- На поверхности вируса расположены выступы Н и N
  - Н это белок гемагглютинин, обеспечивающий способность вируса присоединяться к «клеткехозяину»
  - N это фермент нейраминидазы, позволяющий вирусу проникать в «клетку-хозяина» (эритроцит) и выходить из нее после размножения в фазе виремии, где вирус можно обнаружить в крови
- Поверхностные структуры обеспечивают крайне высокую изменчивость вируса





#### Патологоанатомические признаки при остром и подостром течении



- Обычно грипп протекает в острой, иногда в подострой форме.
- При острой форме короткий латентный период до 2 дней, t 43-44°C, угнетение, поражение органов дыхания, желудка, кишечника, понос, цианоз гребня и сережек, кровоизлияния в серозных и слизистых оболочках, быстрая (за 20 часов) и высокая смертность -100%.
- При сверхострой форме характерных клинических признаков не наблюдается.



#### Резюме

- Самым вероятным путем заражения данными инфекционными заболеваниями остается алиментарный – через корм и кормовое сырье, контаминированный пометом диких птиц-вирусоносителей в процессе миграции.
- При отсутствии термообработки кормов возрастает опасность заноса и распространения вирусных агентов по всему птицепоголовью предприятия.
- Немаловажным звеном в цепи передачи вируса является использование подстилочного материала, хранящегося безукрывно и загрязненного пометом синантропной птицы.
- Огромное значение имеет роль персонала птицефабрик, имеющих домашнюю птицу в личном подворье.



# **Кемин** – постоянное стремление к улучшению качества жизни во всем мире!

- Поиск новых решений Разработка новых продуктов -Новые способы использования уже зарекомендовавших себя продуктов.
- Неорганические кислоты эффективны по отношению к вирусам, чувствительным к низким значениям рН.
- Органические кислоты помимо снижения pH инактивируют вирусы, покрытые липидной оболочкой, путем взаимодействия своих липофильных участков с их мембранами . ( Ист.: De Benedictis P., Beato M.S., Capua I. Inactivation of avian influenza viruses by chemical agents and physical conditions. A review. Zoonoses Public Health, 2007, Vol.54, p.51-68).
- В сотрудничестве с ГНУ ВНИВИП при непосредственном руководстве профессора Э.Д.Джавадова были проведены исследования свойств ингридиентов препаратов Сал Карб относительно вирусов Высокопатогенного Гриппа птиц и Ньюкаслской болезни птиц в 2007 году.



# Изучение воздействия препарата «Сал Карб» на вирусы гриппа птиц и ньюкаслской болезни в чистой культуре вирусов и в смеси комбикорм+вирус

**Цель исследований**: определение инактивирующего действия разных концентраций препарата «Сал Карб» на вирусы Гриппа птиц и Ньюкаслской болезни.

Практическое значение — определение изменения уровня обсемененности корма с содержанием «Сал Карба» вирусами высокопатогенного гриппа птиц и ньюкаслской болезни.

**Материалы:** «Сал Карб» – 3 партии с последующим испытанием «средней».

#### Вирусы:

Вирус гриппа птиц — H5N1 (штамм пятого сероварианта 2007г) инфекционной активностью  $10^{-8,5-9,5}$  ЭЛД  $_{50/мл.}$ 

Вирус болезни Ньюкасла — высокопатогенный мезогенный штамм «Н» той же высокой инфекционной активностью.

Эмбрионы – РЭК 9-10 суточного срока инкубации от СПФ-яйца.

Корм – россыпной комбикорм с Гатчинского и Волховского ККЗ.

Вирусологические исследования проводились по «Методическим указаниям по выделению и идентификации вирусов в объектах ветнадзора» под контролем Главного Управления Ветеринарии РФ



#### Методика проведения исследований

- **1 этап** -получение чистой культуры вирусов экстраэмбриональной вируссодержащей жидкости с инфекционной и гемагглютинирующей активностью от зараженных 9-10 суточных эмбрионов (режим инкубации +37°C в течении 72-96 ч и охлажденных при t 2-4°C в течение 14-16часов).
- 2 этап изучение воздействия препарата на чистую культуру вирусов гриппа птиц и ньюкаслской болезни готовили рабочие растворы препарата согласно инструкции и рабочие растворы вирусов различного разведения, смешиваются равные объемы рабочих растворов препарата и рабочих растворов вирусов. Смеси «препарат+вирус» выдерживаются согласно экспозициям (30-60-90-120 мин, 24часа), после соответствующей экспозиции смеси иннокулируются в РЭК 9-10 суточной инкубации. Контролем являлись эмбрионы с введением рабочих растворов только вирусов и только препарата. Анализу подлежала ЭЭЖ с оценкой степени воздействия препарата на вирусы, после выявления инактивации вирусов следующий этап.



**Зэтап** – изучение воздействия препарата на смесь чистой культуры вирусов гриппа птиц и ньюкаслской болезни птиц+комбикорм.

Для приготовления смеси комбикорм+вирус на каждые 100 г комбикорма вносится 1мл чистой культуры вируса Гриппа птиц и болезни Ньюкасла способные вызвать заболевание у птицы. Выдерживается при комнатной температуре 2-72часа. Из смеси корм+вирус отбираются навески, в которые вносится препарат «Сал Карб» до конечной концентации 1/1000 и 3/1000, смешивается и получается смесь — комбикорм+вирус+препарат. Из смеси корм+вирус и корм+вирус+препарат провели экстракцию вируса. Для проведения вирусологических исследований экстракты центрифугировали, титровали, иннокулировали их РЭК, которые далее инкубировали, охлаждали, оценивалась ЭЭЖ на наличие вирусов и определение их активности. Контролем служит исходный вирус и исходный комбикорм.



#### Оценка и анализ результатов проведенных исследований

- 4этап результаты исследований представлены таблицами 3 и 4 и графиками.
- Проведенными исследованиями установлено —1. в корме без препарата «Сал Карб», обсемененном вирусами ВГП и НБ в дозировке, способной вызвать заболевание у птицы активность вирусов сохраняется, что доказывает стабильность жизнеспособности их в данных условиях от 2-72 часов.
- 2. В пробе корма с содержанием 1кг Сал Карба на 1т снижен % активности вируса ВГП на 38.3%; НБ на 27,7% от исходного за 144ч
- 3.В пробе корма с содержанием 3кг «Сал Карба» на 1 т корма % инактивации ВГП составил 46.3% и НБ 33.8% за 144часа.
- Вируцидная активность препарата проявляется как на чистой культуре вирусов, так и на вирусе в смеси с комбикормом, что позволяет в дальнейшем использовать препарат в дозировках, рекомендованных инструкцией 1-3 кг на тонну корма в зависимости от эпизоотии для профилактики , для снижения вирусной активности и предотвращения горизонтального распространения, что является важнейшим аспектом программы неспецифической профилактики биобезопасности.



#### Динамика снижения активности вируса гриппа птиц в смеси комбикорм плюс вирус плюс препарат «Сал Карб жидкий»

| Врем<br>контакта,<br>час | Исходный вирус |         | СМЕСИ<br>Активность экстрактов (полученных из смеси) |                                      |            |                                      |            |                                      |            |
|--------------------------|----------------|---------|------------------------------------------------------|--------------------------------------|------------|--------------------------------------|------------|--------------------------------------|------------|
|                          |                |         |                                                      |                                      |            |                                      |            |                                      |            |
|                          |                |         | % снижения                                           | активность<br>в ЭЛД <sub>50/мл</sub> | % снижения | активность в<br>ЭЛД <sub>50/мл</sub> | % снижения | активность в<br>ЭЛД <sub>50/мл</sub> | % снижения |
|                          | 2ч             | 0%      | 10 <sup>-9,25</sup>                                  | 0%                                   | 10-6,3     | 7,90%                                | 10-5,86    | 9,50%                                | 10-5,70    |
| 24ч                      | 0,54%          | 10-9,20 | 0,79%                                                | 10-6,25                              | 12,0%      | 10-5,50                              | 15,20%     | 10-5,30                              |            |
| 48प                      | 1,08%          | 10-9,15 | 1,58%                                                | 10-6,20                              | 16,1%      | 10-5,20                              | 19,35%     | 10-5,00                              |            |
| 724                      | 1,08%          | 10-9,15 | 1,58%                                                | 10-6,20                              | 20,9%      | 10-4,90                              | 25,80%     | 10-4,60                              |            |
| 96ч                      | 1,62%          | 10-9,10 | 2,38%                                                | 10-6,15                              | 23,5%      | 10-4,70                              | 30,80%     | 10-4,25                              |            |
| 1444                     | 2,16%          | 10-9,05 | 2,38%                                                | 10-6,15                              | 38,3%      | 10-3,80                              | 46,30%     | 10-3,30                              |            |

Активность вируса гриппа птиц 10-9,25 ЭЛД<sub>50/мл</sub> (исходная)

Конечная концентрация препарата «Сал Карб жидкий» - 1/1000 и 3/1000 в смеси.

Концентрация вируса в смеси - 1,0 мл исходного вируса на 100,0 грамм смеси.

Время контакта вируса с препаратом в смсси 2, 24, 48, 72, 96 и 144 часа



# Динамика снижения активности вируса гриппа птиц в смеси комбикорм+вирус+САЛ Карб жидкий, %





© Kemin Industries, Inc. and its group of companies 2016. All rights reserved. ®™ Trademarks of Kemin Industries, Inc., U.S.A.

#### Динамика снижения активности вируса ньюкаслской болезни в смеси комбикорм плюс вирус плюс препарат «Сал Карб жидкий»

| Врем<br>контакта,<br>час | Исходный вирус |          | СМЕСИ Активность экстрактов (полученных из смеси) |                                      |            |                                      |            |                                                       |            |
|--------------------------|----------------|----------|---------------------------------------------------|--------------------------------------|------------|--------------------------------------|------------|-------------------------------------------------------|------------|
|                          |                |          |                                                   |                                      |            |                                      |            |                                                       |            |
|                          |                |          | % спижения                                        | активность<br>в ЭЛД <sub>50/мл</sub> | % спижения | активность в<br>ЭЛД <sub>50/мл</sub> | % снижения | активность в ЭЛД <sub>50/мл</sub> 10 <sup>-6,35</sup> | % снижения |
|                          | 2ч             | 0%       | 10-9,50                                           | 0%                                   | 10-6,7     | 5,2%                                 | 10-6,35    | 6,7%                                                  | 10-6,25    |
| 24ч                      | 0,52%          | 10-9,45  | 0,74%                                             | 10-6,65                              | 9,2%       | 10-6,10                              | 11,20%     | 10-5,90                                               |            |
| 484                      | 1,05%          | 10-9,40  | 1,49%                                             | 10-6,60                              | 14,3%      | 10-5,70                              | 16,2%      | 10-5,55                                               |            |
| 72ч                      | 1,05%          | 10-9,405 | 2,23%                                             | 10-6,55                              | 18,3%      | 10-5,35                              | 21,3%      | 10-5,15                                               |            |
| 96ч                      | 1,57%          | 10-9,35  | 2,23%                                             | 10-6,55                              | 20,6%      | 10-5.20                              | 26,1%      | 10-4,85                                               |            |
| 1444                     | 1,57%          | 10-9,35  | 2,96%                                             | 10-6,50                              | 27,7%      | 10-4.70                              | 33,8%      | 10-4,30                                               |            |

Активность вируса гриппа птиц 10<sup>-9,5</sup> ЭЛД<sub>50/мл</sub> (исходная)


Конечная концентрация препарата «Сал Карб жидкий» - 1/1000 и 3/1000 в смеси.

Концентрация вируса в смеси - 1,0 мл исходного вируса на 100,0 грамм смеси.

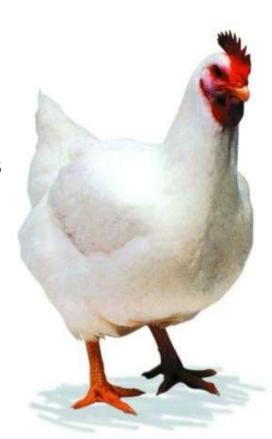
Время контакта вируса с препаратом в смеси 2, 24, 48, 72, 96, 144 часа



# Динамика снижения активности вируса ньюкаслской болезни в смеси комбикорм+вирус+САЛ Карб жидкий, %






## Основные меры неспецифической профилактики инфекций

- Высокий уровень безопасности предприятия важная часть любой программы по предотвращению и контролю распространения вирусных и бактериальных инфекций;
- Цель 1 биосдерживание заключается в невозможности патогена покинуть территорию инфицированной фермы;
- Цель 2 бионедоступность профилактика попадания и распространения возбудителей на участки и подразделения благополучного предприятия.
- Практические меры программы биобезопасности осуществляются на всех уровнях предприятий птицеводческой промышленности – с вовлечением диагностических лабораторий в плане осуществления контроля за мероприятиями, всех производственных служб всего цикла - от кормопроизводства, выращивания и переработки птицы и отходов птицеводства и всего персонала каждой службы предприятия.



#### Практическое применение Сал Карба в кормопроизводстве:

- Для контроля за патогенной бактериальной микрофлорой в программах профилактики сальмонеллеза, клостридиоза;
- Для продления срока хранения корма;
- Для деконтаминации корма патогенной микрофлорой;
- Обеспечивает невозможность развития плесневых грибков и бактерий благодаря комбинации органических и неорганических кислот с бутилгидроксианизолом;
- Для предотвращения горизонтального распространения вирусных агентов и подавления вирулентности полевых инфекций с кормом;
- Для создания полноценной и пролонгированной защиты предприятия от рисков и сохранения и преумножения прибыльности производства.





# Благодарю за внимание!





© Kemin Industries, Inc. and its group of companies 2016. All rights reserved. ®™ Trademarks of Kemin Industries, Inc., U.S.A.